A Hierarchical Mixed Effect Model for the Analysis of Longitudinal DCE-MRI Studies

Volker J. Schmid
Department of Statistics
Ludwig-Maximilians-University Munich

joint work with
Brandon Whitcher
Clinical Imaging Centre
GlaxoSmithKline, London, UK
• Introduction
• Quantitative analysis of DCE-MRI
• Standard analysis for longitudinal studies
• LoMIS model
• Breast cancer study
• Head and neck cancer study
• Extensions
• Dynamic Contrast-Enhanced Magnetic Resonance Imaging
• Usually a contrast agent (Gd-DTPA) is injected to enhance perfusion, i.e., the blood flow in tissue
• After injection several MR scans are acquired every 5-10 seconds
• In each voxel contrast concentration over time can be computed from the signal
• Quantitative analysis is achieved by fitting pharmacokinetic models to the concentration curves
• Cancerous tissue typically has increased perfusion
• Growth of vessels can be initiated from the tumor (angiogenesis)
• DCE-MRI allows to detect tumors, measure volume, diagnose cancer type, evaluate status of tumor
• Cancer treatment often targets angiogenesis (inter alia)
• Hence, success of treatment can be evaluated via DCE-MRI
• Longitudinal drug studies, reduction is perfusion as target
• Typically early phase 1, low patient numbers
Data example

after 0 seconds	after 12 seconds	after 24 seconds	after 36 seconds

after 85 seconds	after 231 seconds	after 376 seconds	after 522 seconds

Introduction
Standard analysis
LoMIS model
Breast cancer study
Head&neck cancer study
Compartment model

\[C_t(t) = v_p C_p(t) + C_p(t) \otimes K^{trans} \exp(-k_{ep}t) \]
\[C_t(t) = v_p C_p(t) + C_p(t) \otimes K^{\text{trans}} \exp(-k_{\text{ep}} t) \]

\(K^{\text{trans}} \): transfer rate between plasma space and EES, main target parameter
\(k_{\text{ep}} \): rate constant for transfer between EES and space
\(v_e = K^{\text{trans}} / k_{\text{ep}} \): volume of EES
\(v_p \): volume of plasma space
\(C_p \): Arterial input function (AIF), can be measured from large vessels in the field of view or given by literature
Non-linear regression

\[C_t(t) = v_p C_p(t) + C_p(t) \otimes K^{trans} \exp(-k_{ep} t) \]

• Given a functional form of the AIF, we can use non-linear regression

• Least squares algorithms like Levenberg-Marquardt suffer from a couple of problems:

 • Convergence is not guaranteed

 • Choice of starting values is crucial

 • Estimates can be biological unrealistic \((K^{trans} > 10)\)
Bayesian non-linear regression

\[C_t(t) = v_p C_p(t) + C_p(t) \otimes K^{\text{trans}} \exp(-k_{\text{ep}} t) \]

- As alternative we use a Bayesian approach:
 \[\log(K^{\text{trans}}) \sim N(0,1) \]
 \[\log(k_{\text{ep}}) \sim N(0,1) \]
 \[v_p \sim \text{Beta}(1,19) \]

- Estimation via MCMC
- Estimates are more robust, biological realistic
Introduction

Standard analysis
LoMIS model
Breast cancer study

Headschck study

Ktrans parameter maps

• Early phase 1 study of breast cancer patients
• 12 patients were scanned before treatment and two weeks after first treatment
• After the treatment six of these patients were identified as pathological responders, the others were nonresponders
• Regions of interest (ROIs) were drawn manually by an expert radiologist on a scan-by-scan basis
Breast cancer study
Standard analysis

- For each scan, an average time curve in the ROI was computed
- A kinetic model was fitted to the averaged concentration
- Change of K_{trans} values between pre-treatment and post-treatment scans is tested via Wald test

\[p = 0.055 \]
Idea of Longitudinal Medical Imaging Studies (LoMIS) model

• Model all curves in all tumor voxels of all scans simultaneously

• Incorporate information about patients and scans (pre/post) similar to a mixed effect model, i.e., decompose kinetic parameters in baseline, treatment, patient, interaction and voxel effect

• Hence, incorporate information about uncertainty in kinetic parameters

• Use posterior of treatment effect to test for success of treatment

• Use posterior of other effects to gain further insight
Schmid, Whitcher, Padhani, Taylor, Yang, MRM (2009), 61, 163-174
\[C_{t, is} (t) = v_{p, is} C_p (t) + K_{is}^{\text{trans}} C_p (t) \otimes \exp(-tk_{ep, is}) + e_{tis} \]

\[\log(K_{is}^{\text{trans}}) = \alpha^T z + \beta x_s + \gamma_i + \delta_i x_s + \epsilon_{is} \]

\[\log(k_{ep}) = \tilde{\alpha}^T z + \tilde{\beta} x_s + \tilde{\gamma} + \tilde{\delta} x_s + \tilde{\epsilon}_{is} \]

\[v_p \sim \text{Beta}(1,19), e_{tis} \sim N(0, \sigma_s^2), \sigma_s^2 \sim \text{IG}(1,10^{-2}) \]

\[p(\alpha) = p(\beta) \propto \text{const.} \]

\[\gamma_i, \delta_i \sim \text{IG}(1,1), \epsilon_{is} \sim \text{IG}(1,10^{-5}) \]
Breast cancer study
Treatment effect

Posterior Density

k_{trans}

Pre-treatment vs. Post-treatment

$p = 0.001$
Breast cancer study

K_{trans} per voxel

V.J. Schmid: Hierarchical MEM for longitudinal DCE-MRI studies

Luebeck, 3.12.2009
• Nine patients with tumor in head or neck area
• Two sites (Royal Marsden Hospital, London, Vall d’Hebron University Hospital, Barcelona) with different scanners
• Placebo (n=6) and treatment (n=3) group
• Vessels were present in images and a population AIF was computed
• Regions of interest were drawn by an expert radiologist
Head and Neck Cancer study
LoMIS results 1

Introduction
Standard analysis
LoMIS model
Breast cancer study

$p = 0.30$

Whitcher, Schmid, Collins, Orton, Koh et al., MRI 2010 (accepted)
Head and Neck Cancer study
LoMIS results 2

Introduction
Standard analysis
LoMIS model
Breast cancer study
Head & Neck cancer study

V.J. Schmid: Hierarchical MEM for longitudinal DCE-MRI studies
Luebeck, 3.12.2009
Head and Neck Cancer study
LoMIS results 3

Introduction
Standard analysis
LoMIS model
Breast cancer study
Head&neck cancer study

V.J. Schmid: Hierarchical MEM for longitudinal DCE-MRI studies
Luebeck, 3.12.2009
Head and Neck Cancer study
LoMIS results 4

Introduction
Standard analysis
LoMIS model
Breast cancer study

V.J. Schmid: Hierarchical MEM for longitudinal DCE-MRI studies
Luebeck, 3.12.2009
• Update of mixed effects is easy (multivariate Gaussian)
• Update of voxel effects is ugly, similar to update of $\log(K^{\text{trans}})$ and $\log(k_{ep})$

$$p(\theta | .) \propto \exp\left(-c_1 \theta^2 - c_2 \exp(c_3 \theta^2) + c_4 \exp(c_5 \theta) \right)$$

• Lot of data:
 • 1000 – 10000 voxel per scan
 • 40 – 50 time points per scan
 • \sim 1 – 2 million data points
• Two pre treatment scans (typically used to evaluate reliability)
• Two or more post treatment scans, gain time line for treatment effect
• Use clinical covariates or genetic expression
• Extensions can easily be included into the mixed effect model
• Use model on other imaging modalities
• DCE-MRI can be used to evaluate treatment success
• Scans are expensive, patient numbers are small
• Standard analysis neglects information given on voxel level
• Mixed effect models can be used to evaluate treatment effect
• We propose to model all concentration curves in all voxels of all scans simultaneously
• Treatment effect can be tested from posterior – power of test is higher
• We gain further insight in patient/treatment interaction and can account for covariates
• Brandon Whitcher, Clinical Imaging Centre, GSK
• Guang-Zhong Yang, Institute of Biomedical Engineering, Imperial College London, UK
• Anwar Padhani, Jane Taylor, Mt Vernon Hospital, Northwood, UK
• David Collins, Matt Orton, Dow-Mu Koh, Institute of Cancer Research UK
• Teams at Royal Marsden Hospital and Vall d’Hebron University Hospital
• BioMed-S: Analysis and modelling of complex systems in biology and medicine (part of the LMUinnovativ initiative)

Thank you for your attention!